Abstract

This mathematical study is related to heat transfer under peristaltic flow of fractional second-grade fluid through nonuniform cylindrical tube with permeable walls. The analysis is performed under low Reynolds number and long wavelength approximation. The analytical solution for pressure gradient, friction force, and temperature field is obtained. The effects of appropriate parameters such as Grashof number, nonuniformity of tube, permeability of tube wall, heat source/sink parameter, material constant, fractional time derivative parameter and amplitude ratio on pressure rise, friction force, and temperature distribution are discussed. It is found that an increase in amplitude ratio and material constant causes increase in pressure but increase in nonuniformity of the tube causes decrease in pressure. It is also observed that variation of friction force against flow rate shows opposite behavior to that of pressure. Increase in temperature is also observed due to increase in heat source/sink parameter at inlet as well as downstream.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.