Abstract
<p style='text-indent:20px;'>The paper is concerned with the analysis of an evolutionary model for magnetoviscoelastic materials in two dimensions. The model consists of a Navier-Stokes system featuring a dependence of the stress tensor on elastic and magnetic terms, a regularized system for the evolution of the deformation gradient and the Landau-Lifshitz-Gilbert system for the dynamics of the magnetization. <p style='text-indent:20px;'>First, we show that our model possesses global in time weak solutions, thus extending work by Benešová et al. 2018. Compared to that work, we include the stray field energy and relax the assumptions on the elastic energy density. Second, we prove the local-in-time existence of strong solutions. Both existence results are based on the Galerkin method. Finally, we show a weak-strong uniqueness property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.