Abstract
We study a reaction–diffusion model in a binary environment made of habitat and non-habitat regions. Environmental heterogeneity is expressed through the species intrinsic growth rate coefficient. It was known that, for a fixed habitat abundance, species survival depends on habitat arrangements. Our goal is to describe the spatial configurations of habitat that maximise the chances of survival. Through numerical computations, we find that they are of two main types – ball-shaped or stripe-shaped. We formally prove that these optimal shapes depend on the habitat abundance and on the amplitude of the growth rate coefficient. We deduce from these observations that the optimal shape of the habitat realises a compromise between reducing the detrimental habitat edge effects and taking advantage of the domain boundary effects. In the case of an infinite-periodic environment, we prove that the optimal habitat shapes can be deduced from those in the case of a bounded domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.