Abstract
The interactions between 316L stainless steel and a multi-point cutting tool create significant opportunities to understand how dry milling of hardened materials affects micromachining conditions. The present work not only compares various computational approaches to the solution of shear plane and tool face temperatures during semi-dry machining, but also discusses how the accompanying machining attributes react to large changes in the coefficient of friction caused by changes in the type of coated cutting tool used for micromachining. The paper accounts for the changes in material properties during semi-dry machining as a function of changes in temperature and also shows how stresses and strains are affected by significant changes in the magnitude of the coefficient of friction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.