Abstract

The pulsatile flow of blood in narrow arteries with multiple-stenoses under body acceleration is analyzed mathematically, treating blood as (i) single-phase Herschel-Bulkley fluid model and (ii) two-phase Herschel-Bulkley fluid model. The expressions for various flow quantities obtained by Sankar and Ismail (2010) for single-phase Herschel-Bulkley fluid model and Sankar (2010c) for two-phase Herschel-Bulkley fluid model are used to compute the data for comparing these fluid models in a new flow geometry. It is noted that the plug core radius, wall shear stress and longitudinal impedance to flow are marginally lower for two-phase H-B fluid model than those of the single-phase H-B fluid model. It is found that the velocity decreases significantly with the increase yield stress of the fluid and the reverse behavior is noticed for longitudinal impedance to flow. It is also noticed that the velocity distribution and flow rate are higher for two-phase Herschel-Bulkley fluid model than those of the single-phase Herschel-Bulkley fluid model. It is also recorded that the estimates of the mean velocity increase with the increase of the body acceleration and this behavior is reversed when the stenosis depth increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.