Abstract

Malaria disease increases the mortality rate of HIV patients. In this work, a mathematical model incorporating an infected, undetected, and treated set of people was developed. The analysis showed that the model is well-posed, the disease-free equilibrium for the model was obtained, and the basic reproduction number of the HIV-malaria co-infection model was calculated. The 14 compartmental models were analyzed for stability, and it was established that the disease-free equilibrium of each model and their co-infections were locally and globally asymptotically stable whenever the basic reproduction number was less than unity or endemic otherwise. Based on the sensitivity analysis, the parameter that has the greatest impact is the contact rate; therefore, it is recommended for public health policies aimed at reducing the burden of these diseases in co-endemic regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call