Abstract

Stability analysis for nonlinear programming systems deals with the possible changes of the system parameters and/or equations that maintain the stability of the solutions. It is a crucial requirement to study the nonlinear system and its practical values, specifically the economic impact in most real-world applications. This paper presents some outcomes in connection with stability analysis corresponding to parametric conic vector optimization problems. For these last optimization problems, two novel types of P-Stability maps, which are the P-Stability notion map and the P-Stability perturbation map, are considered based on six kinds of sets: P-feasible set, P-solvability set, the first, second, third, and fourth kinds of P-Stability notion sets with respect to a specific domination cone P. Furthermore, qualitative characteristics of the P-Stability maps under some continuity and convexity assumptions on the objective function are provided and proved. Specifically, the connections between the P-Stability maps and the P-Stability notion set are investigated. Accordingly, these characteristics were extended to the P-perturbation maps. In addition, the idea of Pstability has heavily used in different applications like network privacy, engineering fields, and some business financial models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.