Abstract

This article demonstrates a mathematical model and theoretical analysis of the Micropolar fluid in the reverse roll coating process. It is important because micropolar fluids account for the microstructure and microrotation of particles within the fluid. These characteristics are significant for accurately describing the behavior of complex fluids such as polymer solutions, biological fluids, and colloidal suspensions. First, we modeled the flow equations using basic laws of fluid dynamics. The flow equations are made modified using low Reynolds number theory. The simplified equations are solved analytically. The exact expression for velocity and pressure gradient are obtained, while pressure is calculated numerically using Simpson Rule. Graphical depictions are carried out to comprehend the impact of the newly emerged physical constraints. The influence of micropolar and microrotation parameters on the velocity, pressure and pressure gradient are elaborated with the help of different graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.