Abstract

In this paper, an eco-epidemiological predator–prey model with stage structure for the prey and a time delay describing the latent period of the disease is investigated. By analyzing corresponding characteristic equations, the local stability of the trivial equilibrium, the predator-extinction equilibrium, the disease-free equilibrium and the endemic equilibrium is addressed. The existence of Hopf bifurcations at the endemic equilibrium is established. By using Lyapunov functionals and LaSalle’s invariance principle, sufficient conditions are obtained for the global asymptotic stability of the trivial equilibrium, the predator-extinction equilibrium, the disease-free equilibrium and the endemic equilibrium of the model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.