Abstract

The electromagnetic parameters in soft contact continuous casting billet mold were analyzed in this paper by mathematical analytic method and numerical simulation; the optimized frequency range was fixed on 20 000-40 000 Hz. The distribution of magnetic flux density and electromagnetic body force in split mold was obtained; the research results achieved respectively by mathematical analytic method and numerical simulation agree with each other. With increase of frequency of electromagnetic field, the electromagnetic body forces acted on the surface of strand increase, and attenuate rapidly towards the center of strand. When the meniscus was located at the middle of coil height, the electromagnetic body force acted on it is biggest, and then decreased along the casting direction to almost zero at the location of charge bottom. On the transverse direction perpendicular to the casting direction, the asymmetrical distribution of magnetic field at the surface of strand permeated through the slit of mold was enhanced slightly with the increase of frequency. The magnetic flux density at the slit area is about 10% higher than that at other area at 40 000 Hz, and the distribution of magnetic body force is almost even on this direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.