Abstract
AbstractFurihata and Matsuo proposed in 2010 an energy-conserving scheme for the Zakharov equations, as an application of the discrete variational derivative method (DVDM). This scheme is distinguished from conventional methods (in particular the one devised by Glassey (Math Comput 58(197):83–102, 1992)) in that the invariants are consistent with respect to time, but it has not been sufficiently studied both theoretically and numerically. In this study, we theoretically prove the solvability under the loosest possible assumptions. We also prove the convergence of this DVDM scheme by improving the argument by Glassey. Furthermore, we perform intensive numerical experiments for comparing the above two schemes. It is found that the DVDM scheme is superior in terms of accuracy, but since it is fully-implicit, the linearly-implicit Glassey scheme is better for practical efficiency. In addition, we proposed a way to choose a solution for the first step that would allow Glassey’s scheme to work more efficiently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Japan Journal of Industrial and Applied Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.