Abstract

Determination of relation between oxides melts properties, based on silicates and calcium alum-silicates and magnesium and their chemical composition and structure is an important condition to provide a rational slag mode in a continuous casting machines mold. A mathematical simulation of slag melts and casting powders accomplished. The oxide-fluoride system was chosen for the simulation, for which the structure after solidification was determined by experiment. Results of molecular-dynamic simulation of CaO–SiO2–Al2O3–MgO–Na2O–K2O–CaF2–FeO system, correspondent to industrial casting powders composition, used during steel casting for slag formation in a CCM mold (35.35 % SiO2; 30.79 % CaO; 8.58 % Al2O3; 1.26 % MgO; 13.73 % CaF2; 7.57 % Na2O; 0.88 % K2O; 1.82 % FeO). Taking into account the concentration, a re-calculation was accomplished to mole shares and correspondent number of ions in the model for each component calculated. Simulation of the 8-component oxide-fluoride melt with 2003 ions size in the main cube (a side length of 31.01 Å) was accomplished at the experimentally determined temperature of solidification onset (1257 K) under periodic boundary conditions and fixed volume. The Coulomb interaction was taken into account by the Ewald–Hansen method. The time step was 0.05t0, where t0 = 7,608×10–14 sec is the internal unit of time. The melt density was taken as 3.04 g/cm3 based on the experimental data. The inter-particle interaction potentials were chosen in the Born–Mayer form. According to the simulation results, the structure of sub-crystalline groups of atoms present in the melt at the temperature of the onset of solidification was determined. A discussion of the simulation results and their comparison with the literature data presented.

Highlights

  • 7.57 % Na2O; 0.88 % K2O; 1.82 % FeO)

  • Taking into account the concentration, a re-calculation was accomplished to mole shares and correspondent number of ions in the model for each component calculated

  • The Coulomb interaction was taken into account by the Ewald–Hansen method

Read more

Summary

МНОГОКОМПОНЕНТНОГО ОКСИФТОРИДНОГО РАСПЛАВА ДЛЯ МНЛЗ

Для моделирования выбрана оксифторидная система, для которой экспериментально была определена структура после затвердевания. Представлены результаты молекулярно-динамического моделирования системы CaO–SiO2–Al2O3–MgO–Na2O–K2O–CaF2–FeO, соответствующей составу промышленной ШОС, используемой при разливке стали для наведения шлака в кристаллизаторе машины непрерывного литья заготовок (35,35 % SiO2; 30,79 % CaO; 8,58 % Al2O3; 1,26 % MgO; 13,73 % CaF2; 7,57 % Na2O; 0,88 % K2O; 1,82 % FeO). Моделирование 8-компонентного оксифторидного расплава размером 2003 иона в основном кубе (длина ребра 31,01 Å) с периодическими граничными условиями провели при экспериментально определенной температуре начала затвердевания (1257 K) и при фиксированном объеме. По результатам моделирования определена структура субкристаллических группировок атомов, присутствующих в расплаве при температуре начала затвердевания. Ключевые слова: непрерывная разливка стали, шлакообразующие смеси, многокомпонентная оксифторидная система, тетраэдрические группировки, молекулярно-динамическое моделирование расплава, потенциал межчастичного взаимодействия. Математическое моделирование атомной структуры многокомпонентного оксифторидного расплава для МНЛЗ // Черная металлургия.

Результаты и обсуждение
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.