Abstract

A mathematic model of rolling pressure during a novel semisolid shearing-rolling process was established. The rolling pressure in this process is higher than that in the conventional rolling. The increment of rolling pressure in the backward slip zone is higher than that in the forward slip zone, and the neutral plane moves toward to the roll gap entrance. The maximum and the average rolling pressures increase with the decrease of strip thickness, and the effects of strip thickness on the rolling pressure is more obvious in the forward slip zone than in the backward slip zone. Meanwhile, the neutral plane moves toward the roll gap exit with the decrease of strip thickness. The maximum and average rolling pressures increase with the decrease of strip width, and the strip width affects the pressure more obviously in the backward slip zone than in the forward slip zone. At the same time, the neutral plane moves toward the roll gap entrance with the decrease of strip width. The maximum and average rolling pressures increase with increasing roll radius, and the neutral plane moves toward the roll gap exit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call