Abstract
We construct a global geometric model for the bosonic sector and Killing spinor equations of four-dimensional $\mathcal{N}=1$ supergravity coupled to a chiral non-linear sigma model and a Spin$^{c}_0$ structure. The model involves a Lorentzian metric $g$ on a four-manifold $M$, a complex chiral spinor and a map $\varphi\colon M\to \mathcal{M}$ from $M$ to a complex manifold $\mathcal{M}$ endowed with a novel geometric structure which we call chiral triple. Using this geometric model, we show that if $M$ is spin the K\"ahler-Hodge condition on a complex manifold $\mathcal{M}$ is enough to guarantee the existence of an associated $\mathcal{N}=1$ chiral geometric supergravity, positively answering a conjecture proposed by D. Z. Freedman and A. V. Proeyen. We dimensionally reduce the Killing spinor equations to a Riemann surface $X$, obtaining a novel system of partial differential equations for a harmonic map with potential $\varphi\colon X\to \mathcal{M}$ from $X$ into the K\"ahler moduli space $\mathcal{M}$ of the theory. We characterize all Riemann surfaces admitting supersymmetric solutions with vanishing superpotential, proving that they consist on holomorphic maps of Riemann surfaces into $\mathcal{M}$ satisfying certain compatibility condition with respect to the canonical bundle of $X$ and the chiral triple of the theory. Furthermore, we classify the biholomorphism type of all Riemann surfaces carrying supersymmetric solutions with complete Riemannian metric and finite-energy scalar map.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.