Abstract

Abstract This article studies $\mathcal{KL}_*$-stability (the stability expressed by $\mathcal{KL}_*$-class function) for a class of hybrid dynamical systems (HDS). The notions of $\mathcal{KL}_{*}\mathcal{K}_{*}$-property and $\mathcal{KL}_{*}$-stability are proposed for HDS with respect to the hybrid-event-time. The $\mathcal{KL}_{*}$-stability, which is based on $\mathcal{K}$ or $\mathcal{L}$ property of the continuous flow, the discrete jump, and the event in an HDS, extends the $\mathcal{KLL}$-stability and the event-stability reported in the literature for HDS. The relationships between $\mathcal{KL}_{*}\mathcal{K}_{*}$-property and $\mathcal{KL}_{*}$-stability are established via introducing the hybrid dwell-time condition (HDT). The HDT generalizes the average dwell-time condition in the literature. For an HDS with $\mathcal{KL}_{*}\mathcal{K}_{*}$-property consisting of stabilizing $\mathcal{L}$-property and destabilizing $\mathcal{K}$-property, it is shown that there exists a common HDT under which the HDS will achieve $\mathcal{KL}_{*}$-stability. Thus HDT may help to derive some easily tested conditions for HDS to achieve uniform asymptotic stability. Moreover, a criterion of $\mathcal{KL}_{*}$-stability is derived by using the multiple Lyapunov-like functions. Examples are given to illustrate the obtained theoretical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call