Abstract
We prove analogs of Whitehead's theorem (from algebraic topology) for both the Chow groups and for the Grothendieck group of coherent sheaves: a morphism between smooth projective varieties whose pushforward is an isomorphism on the Chow groups, or on the Grothendieck group of coherent sheaves, is an isomorphism. As a corollary, we show that there are no nontrivial naive $\mathbb{A}^1$-homotopy equivalences between smooth projective varieties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.