Abstract

Maternal-zygotic co-evolution is one of the most common examples of indirect genetic effects. I investigate how maternal-zygotic gene interactions affect rates of evolution and adaptation. Using comparably parameterized population genetic models, I compare evolution to an abiotic environment with genotype-by-environment interaction (G × E) to evolution to a maternal environment with offspring genotype-by-maternal environment interaction (G × Gmaternal). There are strong parallels between the 2 models in the components of fitness variance but they differ in their rates of evolution measured in terms of ∆p, gene frequency change, or of ∆W, change in mean fitness. The Price Equation is used to partition ∆W into 2 components, one owing to the genetic variance in fitness by natural selection and a second owing to change in environment. Adaptive evolution is faster in the 2-locus model with G × Gmaternal with free recombination, than it is in the 1-locus model with G × E, because in the former the maternal genetic environment coevolves with the zygotic phenotype adapting to it. I discuss the relevance of these findings for the evolution of genes with indirect genetic effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.