Abstract
Mutations in mitochondrial DNA are rare etiologies of adult-onset diabetes mellitus (DM) that merit identification to 1) prevent iatrogenic lactic acidosis, 2) prompt appropriate screening of affected patients and their families, 3) provide genetic counseling, and 4) provide an opportunity to investigate strategies for preventing diabetes. The objective of this study is to raise awareness of this rare form of adult-onset nonobese DM so that these patients are identified and provided with appropriate care. We describe a kindred in which four of seven siblings have adult-onset DM and sensorineural hearing loss with a confirmed genetic mutation at position 3243 in the tRNA. Two other siblings in this kindred demonstrate different phenotypes of mitochondrial disease. The proband was treated with coenzyme Q10 for 1 yr. Outcome measures included stress thallium exercise testing and audiometry testing. After 1 yr of treatment of with coenzyme Q10, repeat stress thallium testing demonstrated improvement in the exercise tolerance of the proband from 7-12 min. Audiometry testing did not demonstrate a change in the rate of hearing decline. Maternally inherited diabetes and deafness is a rare cause of DM that is important to diagnose because of the unique management issues and associated comorbidities. This work highlights clues to the identification of this rare monogenic form of adult- onset diabetes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Clinical Endocrinology & Metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.