Abstract
Background/ObjectiveVitamin D deficiency during pregnancy is associated with poor birth outcomes in some studies, but few have examined weight beyond birth. Additionally, little is known about how vitamin D influences DNA methylation of regulatory regions known to be involved in growth, as possible mediators to weight status in offspring.Subjects/MethodsWe conducted linear regressions to assess maternal plasma 25-hydroxyvitamin D (25(OH)D) by quartile and birth weight for gestational age z-score, 1-year weight-for-length z-score, and 3-year body mass index (BMI) z-score among 476 mother/infant dyads from a prospective cohort. We assessed maternal 25(OH)D and infant DNA methylation at 9 differentially methylated regions (DMRs) of genomically imprinted genes with known functions in fetal growth, including H19, IGF2, MEG3, MEG3-IG, MEST, NNAT, PEG3, PLAGL1, and SGCE/PEG10.ResultsMean (standard deviation, SD) maternal 25(OH)D was 41.1 (14.2) nmol/L at a mean (SD) of 13.2 (5.5) weeks gestation. After adjustment for potential confounders, the first (Q1) and second (Q2) quartiles of 25(OH)D, compared to the fourth (Q4), were associated with lower birth weight for gestational age z-scores (−0.43 units; CI −0.79, −0.07; p=0.02 for Q1 and −0.56 units; CI −0.89, −0.23; p=0.001 for Q2). Q1 compared to Q4 was associated with higher 1-year weight-for-length z-scores (0.78 units; 0.08, 1.54; p=0.04) and higher 3-year BMI z-scores (0.83 units; 0.11, 0.93; p=0.02). We did not observe associations between maternal 25(OH)D and methylation for any of the 9 DMRs after correcting for multiple testing.ConclusionsReduced maternal 25(OH)D was associated with lower birth weight for gestational age z-scores but higher 1-year weight-for-length and 3-year BMI z-scores in offspring. However, 25(OH)D does not appear to be operating through the regulatory sequences of the genomically imprinted genes we examined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.