Abstract

ObjectivesThe colonization of gut microbiota during early life may play a critical role in the progression of metabolic syndrome in adulthood. Targeting gut-based genes in the barrier function, inflammation, and lipid transportation are potential therapies for obesity. Therefore, this study focused on whether maternal deficient vitamin D (VD) intake could aggravate the dysbiosis of gut microbiota by affecting the expressions of these genes in the ileum and colon of obese male offspring mice. MethodsFour-week-old female C57 BL/6 J mice were fed normal (VD-C) or VD-deficient (VD-D) reproductive diets throughout pregnancy and lactation (n = 15/group). Weaning male pups (n = 10/group) were fed either a high-fat (HFD; VD-C-HFD, VD-D-HFD) or normal-fat diet (control) for 16 wk. All biologic samples were obtained after the mice were anesthetized by cervical dislocation. Subsequently, the compositions of the gut microbiota in cecal contents were analyzed using 16 S ribosomal RNA sequencing. Messenger RNA expression in the ileum and colon was determined using real-time reverse transcription-polymerase chain reaction. The distributions of ZO-1 and Claudin-1 were determined using immunohistochemistry testing. ResultsMaternal deficient VD intake significantly aggravated the dysbiosis of gut microbiota persisting into adulthood from phylum to genus levels in the cecal contents among obese male offspring mice. This aggravation led to significantly depleted Bacteroidetes and Verrucomicrobia (Akkermansia, Alliprevotella, and Bacteroides), with higher relative abundance of Firmicutes (Lactobacillus, Lachnoclostridium, Romboutsia, and Ruminiclostridium_9) and Firmicutes/Bacteroidetes. The gene expressions of proinflammatory cytokines (Ccl2, Ccl4 and interleukin-1β) and lipid transportation molecules (Ffar3, Fabp4, and Fabp1) were higher, and the levels of intestinal barrier function (Occludin, ZO-1, and Claudin-1) were lower in the VD-D-HFD group than those in the VD-C-HFD group. Furthermore, there were significant correlations between the dysbiosis of intestinal microbials and expressions of genes related to barrier function, inflammation, and lipid transportation in the ileum and/or colon. ConclusionsMaternal VD deficiency during pregnancy and lactation could aggravate the dysbiosis of gut microbiota to affect the progression of obesity among male offspring, which might be regulated by genes associated with barrier function, inflammation, and lipid transportation. So early life appropriate VD intake could play a significant role in preventing later obesity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.