Abstract

This review summarizes current knowledge from experimental and clinical studies on renal function and venous hemodynamics in normal pregnancy, in gestational hypertension (GH) and in two types of preeclampsia: placental or early-onset preeclampsia (EPE) and maternal or late-onset (LPE) preeclampsia, presenting at <34 weeks and ≥34 weeks respectively. In addition, data from maternal venous Doppler studies are summarized, showing evidence for (1) the maternal circulation functioning closer to the upper limits of capacitance than in non-pregnant conditions, with intrinsic risks for volume overload, (2) abnormal venous Doppler measurements obtainable in preeclampsia, more pronounced in EPE than LPE, however not observed in GH, and (3) abnormal venous hemodynamic function installing gradually from first to third trimester within unique pathways of general circulatory deterioration in GH, EPE and LPE. These associations have important clinical implications in terms of screening, diagnosis, prevention and management of gestational hypertensive diseases. They invite for further hypothesis-driven research on the role of retrograde venous congestion in the etiology of preeclampsia-related organ dysfunctions and their absence in GH, and also challenge the generally accepted view of abnormal placentation as the primary cause of preeclampsia. The striking similarity between abnormal maternal venous Doppler flow patterns and those observed at the ductus venosus and other abdominal veins of the intra-uterine growth restricted fetus, also invites to explore the role of venous congestion in the intra-uterine programming of some adult diseases.

Highlights

  • Renal function during normal and pathologic pregnancy has been studied intensively, towards better understanding the clinically relevant sign of preeclampsia-related proteinuria

  • This review summarizes current knowledge from experimental and clinical studies on renal function and venous hemodynamics in normal pregnancy, in gestational hypertension (GH) and in two types of preeclampsia: placental or early-onset preeclampsia (EPE) and maternal or late-onset (LPE) preeclampsia, presenting at

  • Data from maternal venous Doppler studies are summarized, showing evidence for (1) the maternal circulation functioning closer to the upper limits of capacitance than in non-pregnant conditions, with intrinsic risks for volume overload, (2) abnormal venous Doppler measurements obtainable in preeclampsia, more pronounced in EPE than late-onset preeclampsia (LPE), not observed in GH, and (3) abnormal venous hemodynamic function installing gradually from first to third trimester within unique pathways of general circulatory deterioration in GH, EPE and LPE. These associations have important clinical implications in terms of screening, diagnosis, prevention and management of gestational hypertensive diseases. They invite for further hypothesis-driven research on the role of retrograde venous congestion in the etiology of preeclampsia-related organ dysfunctions and their absence in GH, and challenge the generally accepted view of abnormal placentation as the primary cause of preeclampsia

Read more

Summary

Introduction

Renal function during normal and pathologic pregnancy has been studied intensively, towards better understanding the clinically relevant sign of preeclampsia-related proteinuria. This research has mainly focused on pre- and intrarenal processes, whereas little attention has been given to aspects of renal venous function and outflow. Doppler studies of the maternal venous compartment have revealed important differences between normal pregnancies and those complicated with gestational hypertension (GH), early-onset (EPE) and late-onset preeclampsia (LPE). This review links the reported evidence from renal and venous physiology studies, relative to normal or abnormal course of pregnancy, bringing up new and challenging research questions on the role of venous hemodynamic dysfunction in the symptoms of preeclampsia-related organ dysfunction and on the pathophysiologic background mechanisms of preeclampsia

Renal Physiology in Normal Pregnancy and in Two Types of Preeclampsia
Implications for Clinical Practice
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.