Abstract

The cation-independent mannose 6-phosphate/insulin-like growth factor-2 receptor (M6P/IGF2R or IGF2R) traffics IGF2 and M6P ligands between pre-lysosomal and extra-cellular compartments. Specific IGF2 and M6P high-affinity binding occurs via domain-11 and domains-3-5-9, respectively. Mammalian maternal Igf2r allele expression exceeds the paternal allele due to imprinting (silencing). Igf2r null-allele maternal transmission results in placenta and heart over-growth and perinatal lethality (>90%) due to raised extra-cellular IGF2 secondary to impaired ligand clearance. It remains unknown if the phenotype is due to either ligand alone, or to both ligands. Here, we evaluate Igf2r specific loss-of-function of the domain-11 IGF2 binding site by replacing isoleucine with alanine in the CD loop (exon 34, I1565A), a mutation also detected in cancers. Igf2rI1565A/+p maternal transmission (heterozygote), resulted in placental and embryonic over-growth with reduced neonatal lethality (<60%), and long-term survival. The perinatal mortality (>80%) observed in homozygotes (Igf2rI1565A/I1565A) suggested that wild-type paternal allele expression attenuates the heterozygote phenotype. To evaluate Igf2r tumour suppressor function, we utilised intestinal adenoma models known to be Igf2 dependent. Bi-allelic Igf2r expression suppressed intestinal adenoma (ApcMin). Igf2rI1565A/+p in a conditional model (Lgr5-Cre, Apcloxp/loxp) resulted in worse survival and increased adenoma proliferation. Growth, survival and intestinal adenoma appear dependent on IGF2R-domain-11 IGF2 binding.

Highlights

  • The function of the fifteen homologous extra-cellular domains of the cation-independent mannose 6-phosphate/ insulin-like growth factor 2 receptor (M6P/IGF2R or IGF2R) include the binding, trafficking and extra-cellular internalisation of ligands, such as Insulin-like growth factor 2 (IGF2), mannose 6-phosphate (M6P) modified lysosomal proteases and plasminogen[1]

  • To date there have been no specific point mutations introduced into the mouse germ-line that result in specific loss of function of Igf2r protein domains

  • The loss of function of Igf2r maternal expressed allele in mouse development suggest that both loss of mannose 6-phosphate binding and lysosomal enzyme supply may contribute to the disproportionate growth phenotype, as the mechanism of growth regulation of Igf[2] appears proportionate to the mechanisms of cell proliferation and cell death at embryonic day 932

Read more

Summary

Introduction

The function of the fifteen homologous extra-cellular domains of the cation-independent mannose 6-phosphate/ insulin-like growth factor 2 receptor (M6P/IGF2R or IGF2R) include the binding, trafficking and extra-cellular internalisation of ligands, such as Insulin-like growth factor 2 (IGF2), mannose 6-phosphate (M6P) modified lysosomal proteases and plasminogen[1]. For the first time, we introduce a direct mouse knock-in mutation of one of the IGF2 binding residues in the binding site CD-loop of domain 11, that results in replacement of isoleucine, a hydrophobic amino acid,with alanine (I15721 in human, I1565 in mouse) This mutation has been detected in human liver cancer[28], along with other loss-of-function mechanisms such as expansion of a polyG tract in colorectal cancer. It has been proposed that tumour growth promotion might result because of increased local IGF2 supply, as a result of the specific loss of IGF2 binding to IGF2R The phenotype of this single knock-in allele mutation in the mouse (Igf2rI1565A) resulted in a placental and embryonic over-growth phenotype and partial neonatal lethality, with at least 40% of heterozygous mice surviving into adulthood. As a result of this attenuated phenotype, we were able to further characterise the tumour suppressor function using this novel Igf2rI1565A allele in adult intestinal adenoma models

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call