Abstract

Given the wide applications of silver nanoparticles (AgNPs), it is necessary to evaluate their potentially adverse long-term effects. In this study, we performed a 100-day exposure of medaka fish to citrate and luminogens coated AgNPs and investigated the maternal transfer potentials and biodistribution of AgNPs. Following long-term AgNPs exposure, AgNPs were mainly distributed in the liver, followed by gills, intestine, and brain, but were also detected in the ovary and strongly colocalized with the dissolved Ag+. The quantified transfer efficiency of different Ag species was 1.56–5.07%. Long-term exposure of medaka to small size of AgNPs (20 nm) reduced the hatching rate attributable to the accumulation of AgNPs and their dissolved Ag+. The maternally transferred AgNPs were mainly concentrated in the Kupffer's vesicle of embryos, while their dissolved Ag+ was almost homogeneously distributed in the embryos. In contrast, the newly accumulated AgNPs were mainly absorbed at the chorion of embryos. During initial larval development, the maternally transferred AgNPs and their dissolved Ag+ were consistently concentrated in intestine. Significant dissolution of maternally transferred AgNPs occurred during larval development. Our results showed that long-term exposure to AgNPs caused distinct biodistribution in the next generation of medaka, and may have implications for assessing their potential adverse effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call