Abstract

AbstractTemperature is a crucial environmental component that imposes physiological constraints and ultimately produces variation in life-history traits. Temperatures experienced by mothers can influence offspring phenotypes, including growth and sex ratios, especially in ectothermic species. However, mechanisms by which thermal information can be passed onto offspring have been underexplored. Here, we investigated corticosterone as a potential mediator of thermal maternal effects. We held female jacky dragons (Amphibolurus muricatus) in two different thermal regimes (short [7 h] or long [11 h] basking treatments), then quantified plasma corticosterone levels and tested for correlations between the resulting corticosterone levels and reproductive outputs. Lizards in the long-bask treatment had significantly higher corticosterone levels than those in the short-bask treatment. Maternal corticosterone, in turn, had sex-dependent effects on offspring hatching size but was not associated with maternal reproductive effort or offspring sex or growth. In contrast, maternal body condition was strongly positively related to both reproductive output (including clutch size and total number of eggs) and offspring size at hatching but had no effect on offspring growth. Basking treatment also interacted with condition and corticosterone to affect egg mass and hatchling snout-vent length, respectively. When we tested for relationships between corticosterone levels and body condition, we found corticosterone to be negatively related to condition in long-bask lizards but only in the postbreeding season. These findings indicate that thermal opportunity alters physiology, with potential consequences for fitness. Moreover, the results suggest interactive influences of temperature, corticosterone, and condition as mediators of maternal effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.