Abstract

Tamoxifen (TAM) is an accredited drug used for treatment and prevention of breast cancer. Due to the long-term taking and the trend for women to delay childbearing, inadvertent conception occasionally occurs during TAM treatment. To explore the effects of TAM on a fetus, pregnant mice at gestation day 16.5 were orally administrated with different concentrations of TAM. Molecular biology techniques were used to analyze the effects of TAM on primordial follicle assembly of female offspring and the mechanism. It was found that maternal TAM exposure affected primordial follicle assembly and damaged the ovarian reserve in 3 dpp offspring. Up to 21 dpp, the follicular development had not recovered, with significantly decreased antral follicles and decreased total follicle number after maternal TAM exposure. Cell proliferation was significantly inhibited; however, the cell apoptosis was induced by maternal TAM exposure. Epigenetic regulation was also involved in the process of TAM induced abnormal primordial follicle assembly. The changed levels of H3K4me3, H3K9me3, and H3K27me3 presented the function of histone methylation in the regulation of the effects of maternal TAM exposure on the reproduction of female offspring. Moreover, the changed level of RNA m6A modification and the changed expression of genes related to transmethylation and demethylation proved the role of m6A in the process. Maternal TAM exposure led to abnormal primordial follicle assembly and follicular development by affecting cell proliferation, cell apoptosis, and epigenetics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call