Abstract

BackgroundMaternal inflammation during pregnancy increases the risk for offspring psychiatric disorders and other adverse long-term health outcomes. The influence of inflammation on the developing fetal brain is hypothesized as one potential mechanism but has not been examined in humans. MethodsParticipants were adult women (N = 86) who were recruited during early pregnancy and whose offspring were born after 34 weeks’ gestation. A biological indicator of maternal inflammation (interleukin-6) that has been shown to influence fetal brain development in animal models was quantified serially in early, mid-, and late pregnancy. Structural and functional brain magnetic resonance imaging scans were acquired in neonates shortly after birth. Infants’ amygdalae were individually segmented for measures of volume and as seeds for resting state functional connectivity. At 24 months of age, children completed a snack delay task to assess impulse control. ResultsHigher average maternal interleukin-6 concentration during pregnancy was prospectively associated with larger right amygdala volume and stronger bilateral amygdala connectivity to brain regions involved in sensory processing and integration (fusiform, somatosensory cortex, and thalamus), salience detection (anterior insula), and learning and memory (caudate and parahippocampal gyrus). Larger newborn right amygdala volume and stronger left amygdala connectivity were in turn associated with lower impulse control at 24 months of age, and mediated the association between higher maternal interleukin-6 concentrations and lower impulse control. ConclusionsThese findings provide new evidence in humans linking maternal inflammation during pregnancy with newborn brain and emerging behavioral phenotypes relevant for psychiatric disorders. A better understanding of intrauterine conditions that influence offspring disease susceptibility is warranted to inform targeted early intervention and prevention efforts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.