Abstract

The effects of maternal salinity and light incubation on the salinity tolerance of the facultative halophyte Anabasis setifera during their germination stages were assessed. Seeds were collected from non-saline habitats in Egypt and saline habitats in the United Arab Emirates (UAE). The seeds of the two populations were germinated in 0, 100, 200, 400, 600 and 800 mM NaCl, and incubated at 25°C/15°C in both 12-h light and 12-h darkness regimes and continuous darkness. Significantly more seeds germinated in the Egyptian population than in the UAE population. Salinity tolerance was significantly greater with the Egyptian population than with the UAE population, especially under the conditions of higher salinities. The difference in salinity tolerance between the seeds of two populations was attributed to their seed mass. In addition, germination was significantly faster for the Egyptian population than for the UAE population. Most of the saline treated seeds were able to recover their germination when transferred to distilled water, but this depended on their maternal salinity and light incubation. Recovery from higher salinities was significantly better for the seeds under darkness than for those under light in the UAE population, but the reverse was true for the seeds in the Egyptian population. The higher salinity tolerance for the A. setifera seeds from the non-saline Egyptian population and the lower salinity tolerance for the seeds from the saline UAE population cannot explain their natural distribution. Further studies about other possible roles, such as levels of different promoting and inhibiting phytohormones, are needed to understand the importance of salinity as an environmentally induced maternal effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.