Abstract

Previous studies have shown that maternal resveratrol improved growth performance and altered the microbial composition of suckling piglets under hot summer conditions. However, it remains unclear how maternal resveratrol improves growth performance of suckling piglets during high summer temperatures. A total of 20 sows (Landrace × Large White; three parity) were randomly assigned to 2 groups (with or without 300 mg/kg resveratrol) from d 75 of gestation to d 21 of lactation during high ambient temperatures (from 27 to 30 °C). The results showed that maternal resveratrol supplementation increased total daily weight gain of piglets under hot summer conditions, which is consistent with previous studies. Furthermore, we found that maternal resveratrol improved the intestinal morphology and intestinal epithelial proliferation in suckling piglets. Dietary resveratrol supplementation affected the characteristics of exosome-derived microRNAs (miRNAs) in sow colostrum, as well as the genes targeted by differentially produced miRNAs. MiRNAs are concentrated in the tight junction pathway. As a result, the expression of intestinal tight junction proteins was increased in suckling piglets (P < 0.05). Notably, maternal resveratrol increased the intestinal secretory immunoglobulin A (sIgA) levels of suckling piglets via colostrum immunoglobin (P < 0.05), which could increase the abundance of beneficial microbiota to further increase the concentration of short chain fatty acids (SCFA) in suckling piglets' intestine (P < 0.05). Finally, our correlation analysis further demonstrated the positive associations between significantly differential intestinal microbiota, intestinal sIgA production and SCFA concentrations, as well as the positive relation between total daily weight gain and intestinal health of suckling piglets. Taken together, our findings suggested that maternal resveratrol could promote intestinal health to improve piglet growth during high summer temperatures, which might be associated with the immunoglobin and exosome-derived miRNAs in sows' colostrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.