Abstract

Objective. Preeclampsia (PE) is a pregnancy-specific syndrome and one of the leading causes of maternal and fetal morbidity and mortality. The pathophysiological mechanisms of PE remain poorly known. Recently, circulating miRNAs are considered as potential useful noninvasive biomarkers. The aim of this study was to identify differentially expressed plasma miRNAs in preeclamptic pregnancies compared with normal pregnancies. Methods. Maternal plasma miRNA expression profiles were detected by SOLiD sequencing. Differential expressions between mPE/sPE and control group were found. Next, four differentially expressed plasma miRNAs were chosen to validate their expression in other large scale samples by real-time PCR. Results. In terms of sequencing results, we identified that 51 miRNAs were differentially expressed. Four differentially expressed plasma miRNAs (miR-141, miR-144, miR-221, and miR-29a) were selected to validate the sequencing results. RT-PCR data confirmed the reliability of sequencing results. The further statistical analysis showed that maternal plasma miR-141 and miR-29a are significantly overexpressed in mPE (P < 0.05). Maternal plasma miR-144 is significantly underexpressed in mPE and sPE (P < 0.05). Conclusions. Results showed that there were differentially expressed maternal plasma miRNAs in patients with preeclampsia. These plasma miRNAs might be used as notable biomarkers for diagnosis of preeclampsia.

Highlights

  • Preeclampsia (PE) is a pregnancy-specific syndrome characterized by hypertension and proteinuria (300 mg or greater in a 24 h urine specimen and/or protein to creatinine ratio of >0.30) that occurs after 20 weeks of pregnancy [1]

  • Three groups of samples were used for preparation of small RNA libraries, mild preeclampsia group (n = 4); severe preeclampsia group (n = 4); normal pregnancy control group (n = 4)

  • In terms of sequencing results, we identified that 51 miRNAs were differentially expressed, in which 22 miRNAs were upregulated and 5 miRNAs were downregulated in severe preeclamptic plasmas, and 33 miRNAs were upregulated and 6 miRNAs were downregulated in mild preeclamptic plasmas, when compared with normal pregnancy controls, respectively, (Figure 2)

Read more

Summary

Introduction

Preeclampsia (PE) is a pregnancy-specific syndrome characterized by hypertension (defined as systolic blood pressure ⩾140 mmHg or diastolic blood pressure ⩾90 mmHg) and proteinuria (300 mg or greater in a 24 h urine specimen and/or protein to creatinine ratio of >0.30) that occurs after 20 weeks of pregnancy [1]. Preeclampsia can lead to problems in the liver, kidneys, brain, and the clotting system and remained one of the leading causes of maternal and fetal morbidity and mortality [1]. 10% to 15% of direct maternal deaths are associated with preeclampsia and eclampsia. Risks for the baby include poor growth and prematurity, and perinatal mortality is high following preeclampsia [2]. The pathophysiological mechanisms of PE remain poorly known; most studies have implicated inadequate invasion of cytotrophoblasts into the uterine artery, leading to reduced uteroplacental perfusion pressure (RUPP) and placental ischemia/hypoxia, and an altered maternal immune response may play a role in the development of PE [3]. Blood-based miRNAs may be potential biomarkers for early detection, diagnosis, and follow-up of this disease

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.