Abstract

To investigate the mechanism controlling the fall in maternal pituitary responsiveness to GnRH, LH synthesis and pituitary GnRH receptor content during pregnancy, maternal pituitaries were collected from sheep on days 35, 45, 60, 90, 110, 125 and 135 of pregnancy. Circulating steroids and gonadotrophins were determined in blood samples collected from these ewes immediately before death. Pituitary blocks from each ewe were perifused with either medium alone (control) or medium supplemented with oestradiol, oestradiol plus progesterone or oestradiol plus RU486, for 150 min before administration of two 15 s GnRH pulses 90 min apart. The amounts of mRNA encoding LH beta and GnRH receptor were determined in pituitary tissue fragments snap-frozen in liquid N2 at the time of collection from the ewes. While basal LH secretion fell during pregnancy, pituitary responsiveness to GnRH remained high (up to seven times basal LH concentrations). After day 90, the first GnRH pulse elicited LH peaks equivalent to the LH peaks produced by the second GnRH pulse. Therefore, GnRH self-priming was not evident possibly because the pituitaries were constantly primed by increased concentrations of maternal oestradiol. Around day 90, circulating concentrations of progesterone rose from 7.8 +/- 1.5 to 12.2 +/- 3.8 ng ml-1. Up to day 60, oestradiol in the perifusion buffer had stimulatory effects on LH secretion although this was reduced by RU486. By day 125, the content of mRNA encoding LH beta had declined during pregnancy to 7% of the content on day 35, although the content of mRNA encoding GnRH receptor remained unchanged. From these data, there appears to be a transitional period at around day 90 of gestation when pituitary sensitivity to steroids in vitro is lost together with detectable GnRH self-priming. In conclusion, the marked decline in pituitary amounts of mRNA encoding LH beta, but not in GnRH responsiveness or expression of GnRH receptor, after day 45 of pregnancy suggests that the principal effect of pregnancy on gonadotroph function is mediated via a mechanism other than reduced pituitary amounts of GnRH receptors. Two possible mechanisms are (1) a reduction in GnRH output leading to lowered LH synthesis, or (2) the presence of an inhibitory factor with a short half-life in the maternal circulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call