Abstract

BackgroundMaternal obesity (MO) increases fetal androgen concentrations, the prevalence of macrosomia, and predisposes offspring to metabolic dysfunction in later life, especially males. These risks may be, in part, the result of increased liver-specific androgen signalling pathway activity in utero. Androgen signalling activity can be suppressed by androgen metabolism via cytochrome P450 (CYP) isoenzymes (CYP2B6, CYP3A) or through inhibition of the full-length androgen receptor (AR-FL) via the antagonistic isoform, AR-45. We hypothesised MO impairs CYP enzyme activity and AR-45 expression in male fetal livers, thereby enhancing activity of androgen signalling pathways. MethodsNine months prior to pregnancy, nulliparous female baboons were assigned to either ad libitum control or high fat diet. At 165 day (d) gestation (term, 180 d) fetal liver was collected (n = 6/sex/group). CYP activity was quantified using functional assays; subcellular AR expression was measured using Western blot. ResultsCYP2B6 and CYP3A activity, and nuclear expression of AR-45, was reduced in MO males only. Nuclear AR-45 expression was inversely related with fetal body weight of MO males only. ConclusionsReduced CYP2B6 and CYP3A activity in conjunction with decreased nuclear AR-45 expression may enhance liver androgen signalling in males from MO pregnancies, thereby increasing the risk of macrosomia, as well as metabolic dysfunction in later life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call