Abstract

Thyroid hormone deprivation during fetal life has been implicated in neurodevelopmental morbidity. In humans, poor growth in utero is also associated with fetal hypothyroxinaemia. In guinea pigs, a short period (48 h) of maternal nutrient deprivation at gestational day (gd) 50 results in fetuses with hypothyroxinaemia and increased brain/body weight ratios. Thyroid hormone action is mediated by nuclear thyroid hormone receptors (TRs) and is dependent upon the prereceptor regulation of supply of triiodothyronine (T3) by deiodinase enzymes. Examination of fetal guinea pig brains using in situ hybridization demonstrated widespread expression of mRNAs encoding TRalpha1, alpha2 and beta1, with regional colocalization of deiodinase type 2 (D2) mRNA in the developing forebrain, limbic structures, brainstem and cerebellum at gd52. With maternal nutrient deprivation, TRalpha1 and beta1 mRNA expression was significantly increased in the male, but decreased in the female fetal hippocampus and cerebellum and other areas showing high TR expression under euthyroid conditions. Maternal nutrient deprivation resulted in elevated D2 mRNA expression in males and females. Deiodinase type 3 (D3) mRNA expression was confined to the shell of the nucleus accumbens, the posterior amygdalohippocampal area, brainstem and cerebellum, and did not change with maternal nutrient deprivation. In conclusion, maternal nutrient deprivation resulted in sex-specific changes in TR mRNA expression and a generalized increase in D2 mRNAs within the fetal brain. These changes may represent a protective mechanism to maintain appropriate thyroid hormone action in the face of fetal hypothyroxinaemia in order to optimize brain development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.