Abstract

Maternal iron deficiency (ID) and environmental lead (Pb) exposure are co-occurring insults that both affect the neurodevelopment of offspring. Few studies have investigated how ID affects brain-region-specific Pb accumulations using human-relevant Pb concentrations. Furthermore, how these Pb exposures impact blood and brain Fe levels remains unclear. Importantly, we also wanted to determine whether the use of blood Pb levels as a surrogate for the brain Pb burden is affected by underlying iron status. We exposed virgin Swiss Webster female mice to one of six conditions differing by iron diet and Pb water concentration (0 ppm, 19 ppm, or 50 ppm lead acetate) and used Inductively Coupled Plasma Mass Spectrometry to measure the maternal and offspring circulating, stored, and brain Pb levels. We found that maternal ID rendered the offspring iron-deficient anemic and led to a region-specific depletion of brain Fe that was exacerbated by Pb in a dose-specific manner. The postnatal iron deficiency anemia also exacerbated cortical and hippocampal Pb accumulation. Interestingly, BPb levels only correlated with the brain Pb burden in ID pups but not in IN offspring. We conclude that ID significantly increases the brain Pb burden and that BPb levels alone are insufficient as a clinical surrogate to make extrapolations on the brain Pb burden.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call