Abstract
ObjectiveMaternal immune activation (MIA) is associated with an increased risk of autism spectrum disorder (ASD) in offspring. Herein, we investigate the altered expression of microRNAs (miRNA), and that of their target genes, in the brains of MIA mouse offspring.MethodsTo generate MIA model mice, pregnant mice were injected with polyriboinosinic:polyribocytidylic acid on embryonic day 12.5. We performed miRNA microarray and mRNA sequencing in order to determine the differential expression of miRNA and mRNA between MIA mice and controls, at 3 weeks of age. We further identified predicted target genes of dysregulated miRNAs, and miRNA‐target interactions, based on the inverse correlation of their expression levels.ResultsMice prenatally subjected to MIA exhibited behavioral abnormalities typical of ASD, such as a lack of preference for social novelty and reduced prepulse inhibition. We found 29 differentially expressed miRNAs (8 upregulated and 21 downregulated) and 758 differentially expressed mRNAs (542 upregulated and 216 downregulated) in MIA offspring compared to controls. Based on expression levels of the predicted target genes, 18 downregulated miRNAs (340 target genes) and three upregulated miRNAs (60 target genes) were found to be significantly enriched among the differentially expressed genes. miRNA and target gene interactions were most significant between mmu‐miR‐466i‐3p and Hfm1 (ATP‐dependent DNA helicase homolog), and between mmu‐miR‐877‐3p and Aqp6 (aquaporin 6).InterpretationOur results provide novel information regarding miRNA expression changes and their putative targets in the early postnatal period of brain development. Further studies will be needed to evaluate potential pathogenic roles of the dysregulated miRNAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.