Abstract

Congenital heart disease (CHD) is the most common type of birth defect and is both a significant pediatric and adult health problem, in light of a growing population of survivors. The etiology of CHD has been considered to be multifactorial with genetic and environmental factors playing important roles. The combination of advances in cardiac developmental biology, which have resulted in the elucidation of molecular pathways regulating normal cardiac morphogenesis, and genome sequencing technology have allowed the discovery of numerous genetic contributors of CHD ranging from chromosomal abnormalities to single gene variants. Conversely, mechanistic details of the contribution of environmental factors to CHD remain unknown. Maternal diabetes mellitus (matDM) is a well-established and increasingly prevalent environmental risk factor for CHD, but the underlying etiologic mechanisms by which pregestational matDM increases the vulnerability of embryos to cardiac malformations remains largely elusive. Here, we will briefly discuss the multifactorial etiology of CHD with a focus on the epidemiologic link between matDM and CHD. We will describe the animal models used to study the underlying mechanisms between matDM and CHD and review the numerous cellular and molecular pathways affected by maternal hyperglycemia in the developing heart. Last, we discuss how this increased understanding may open the door for the development of novel prevention strategies to reduce the incidence of CHD in this high-risk population.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call