Abstract

We aimed to determine the impact of high-fructose intake during pregnancy on the fetal-placental unit in rats, which may be the initial mechanism of the programming effect of fructose. Pregnant Sprague–Dawley rats were randomly assigned to three groups and respectively provided tap water (n = 10), 10% (w/v) fructose solution (n = 10), and 10% (w/v) glucose solution (n = 10) from embryonic day 0 to 20. Compared with the control and glucose groups, significantly lower fetal length, fetal weight, placental weight, and fetus/placenta ratio were found in the fructose group on embryonic day 20 (all p<0.05). In parallel with markedly increased uric acid concentrations in the dams, significantly decreased antioxidant enzymes activities and mRNA expression levels were observed in placentas in the fructose group (all p<0.05). In the fructose group, placental mRNA and protein expression of nuclear factor erythroid 2-related factor 2 was markedly downregulated and kelch-like ECH-associated protein 1 was significantly upregulated (all p<0.05). In conclusion, high-fructose consumption during pregnancy drives augmented oxidative stress in rats. Placental insufficiency under oxidative stress contributes to asymmetrical fetal growth restriction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.