Abstract

Evidence suggests that maternal obesity (MO) can aggravate placental function causing severe pathologies during the perinatal window. However, molecular changes and mechanisms of placental dysfunction remain largely unknown. This work aimed to decipher structural and molecular alterations of the placental transfer zone associated with MO. To this end, mice were fed a high fat diet (HFD) to induce obesity before mating, and pregnant dams were sacrificed at E15.5 to receive placentas for molecular, histological, and ultrastructural analysis and to assess unidirectional materno-fetal transfer capacity. Laser-capture microdissection was used to collect specifically placental cells of the labyrinth zone for proteomics profiling. Using BeWo cells, fatty acid-mediated mechanisms of adherens junction stability, cell layer permeability, and lipid accumulation were deciphered. Proteomics profiling revealed downregulation of cell adhesion markers in the labyrinth zone of obese dams, and disturbed syncytial fusion and detachment of the basement membrane (BM) within this zone was observed, next to an increase in materno-fetal transfer in vivo across the placenta. We found that fetuses of obese dams develop a growth restriction and in those placentas, labyrinth zone volume-fraction was significantly reduced. Linoleic acid was shown to mediate beta-catenin level and increase cell layer permeability in vitro. Thus, MO causes fetal growth restriction, molecular and structural changes in the transfer zone leading to impaired trophoblast differentiation, BM disruption, and placental dysfunction despite increased materno-fetal transfer capacity. These adverse effects are probably mediated by fatty acids found in HFD demonstrating the need for obesity treatment to mitigate placental dysfunction and prevent offspring pathologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.