Abstract

Maternal diet plays a critical role in health development. Perinatal overnutrition induces metabolic dysfunctions and obesity in the offspring. Obesity is associated with endocannabinoid system (ECS) over activation and oxidative stress. Liver ECS activation induces hepatic steatosis, inflammation and fibrosis while the antagonism of cannabinoid receptors ameliorates these alterations. Here, we investigated the effect of perinatal maternal high-fat diet (HF, 29% of calories as fat) on the ECS and antioxidant system in liver of male and female adult rat offspring (180 days old). Maternal HF diet increased hepatic cannabinoid receptors, ECS metabolizing enzymes and triglyceride content, with male offspring more affected. ECS changes are likely independent of estradiol serum levels but associated with increased hepatic content of estrogen receptor, which can stimulate the expression of ECS components. Differently, maternal HF diet decreased the activity of the antioxidant enzymes glutathione peroxidase, superoxide dismutase and catalase, and increased oxidative stress markers in both sexes. Alterations in the redox homeostasis were associated with mitochondria damage but not with liver fibrosis. Our data suggest that maternal HF diet induces ECS over activation in adulthood, and that male offspring are at higher risk to develop liver disease compared with female rats.

Highlights

  • Maternal diet plays a critical role in health development

  • We have shown that maternal high-fat (HF) diet during gestation and lactation induces obesity in the offspring associated with thyroid and adrenal dysfunction, hyperleptinemia with hypothalamic leptin resistance, hepatic dysfunction, dyslipidemia, hyperphagia and increased appetite for fat across different periods of life[4,5,6,7,8]

  • We investigated the endocannabinoid system (ECS) in liver of the male and female adult rat offspring from HF fed dams in parallel to the prooxidant and antioxidant profile

Read more

Summary

Introduction

Maternal diet plays a critical role in health development. Perinatal overnutrition induces metabolic dysfunctions and obesity in the offspring. Liver ECS activation induces hepatic steatosis, inflammation and fibrosis while the antagonism of cannabinoid receptors ameliorates these alterations. Maternal HF diet increased hepatic cannabinoid receptors, ECS metabolizing enzymes and triglyceride content, with male offspring more affected. Our data suggest that maternal HF diet induces ECS over activation in adulthood, and that male offspring are at higher risk to develop liver disease compared with female rats. We have shown that maternal high-fat (HF) diet during gestation and lactation induces obesity in the offspring associated with thyroid and adrenal dysfunction, hyperleptinemia with hypothalamic leptin resistance, hepatic dysfunction, dyslipidemia, hyperphagia and increased appetite for fat across different periods of life[4,5,6,7,8]. CB1 antagonism improves liver steatosis, decreases serum triglyceride levels and increases serum high-density lipoprotein (HDL)[18,19]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call