Abstract
Maternal overnutrition has been reported to affect brain plasticity of the offspring by altering gene expression, regulating both synaptic plasticity and adult neurogenesis. However, whether perinatal metabolic stress may influence the accumulation of misfolded proteins and the development of neurodegeneration remains to be clarified. We investigated the impact of maternal high fat diet (HFD) in an experimental model of Alzheimer's disease (AD). The 3xTg-AD mice born to overfed mothers showed an impairment of synaptic plasticity and cognitive deficits earlier than controls. Maternal HFD also altered the expression of genes regulating amyloid-β-protein (Aβ) metabolism (i.e., Bace1, Ern1, Ide and Nicastrin) and enhanced Aβ deposition in the hippocampus. Finally, we found an epigenetic derangement and an aberrant recruitment of transcription factors NF-kB and STAT3 and chromatin remodeler HDAC2 on the regulatory sequences of the same genes. Collectively, our data indicate that early life metabolic stress worsens the AD phenotype via epigenetic alteration of genes regulating Aβ synthesis and clearance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.