Abstract

BackgroundLipid metabolism dysregulations have been associated with depressive and anxious behaviors which can affect pregnant and lactating individuals, with indications that such changes extend to the offspring. Therefore, the aim of this study was to evaluate the effect of a maternal high-fat diet on the neurobehavioral, biochemical and inflammatory parameters of their adult female offspring. MethodsWistar rats ± 90 days old were mated. The dams were allocated to consume a control (CTL) or high-fat (HFD) diet during pregnancy and lactation. After weaning, the female offspring from the CTL (N = 10) and HFD (N = 10) groups received standard chow. The offspring behavioral tests were started at 120 days old. Then, the somatic measures were evaluated followed by euthanasia, histological and biochemical analyses. ResultsThe HFD group had less ambulation and longer immobility time in the open field test compared to the CTL. The HFD group had lower HDL (48.4%) and a higher adiposity (71.8%) and LDL (62.2%) than the CTL. The CTL had a higher organic acid concentration in the intestine, mainly acetic and butyric acids, however the HFD had a higher citric and acetic acid concentration in the brain and ischemic lesion in the hippocampus with a higher NF-κB concentration. ConclusionThe results demonstrate deleterious effects of a maternal HFD on the neurobehavioral and biochemical parameters of their offspring which may be associated with the role of organic acids and NF-κB in fetal programming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.