Abstract

The settlement of the Tibetan Plateau epitomizes human adaptation to a high-altitude environment that poses great challenges to human activity. Here, we reconstruct a 4000-year maternal genetic history of Tibetans using 128 ancient mitochondrial genome data from 37 sites in Tibet. The phylogeny of haplotypes M9a1a, M9a1b, D4g2, G2a'c, and D4i show that ancient Tibetans share the most recent common ancestor with ancient Middle and Upper Yellow River populations around the Early and Middle Holocene. In addition, the connections between Tibetans and Northeastern Asians vary over the past 4000 years, with a stronger matrilineal connection between the two during 4000 BP–3000 BP, and a weakened connection after 3000 BP, that are coincident with climate change, followed by a reinforced connection after the Tubo period (1400 BP–1100 BP). Besides, an over 4000-year matrilineal continuity is observed in some of the maternal lineages. We also find the maternal genetic structure of ancient Tibetans is correlated to the geography and interactions between ancient Tibetans and ancient Nepal and Pakistan populations. Overall, the maternal genetic history of Tibetans can be characterized as a long-term matrilineal continuity with frequent internal and external population interactions that are dynamically shaped by geography, climate changes, as well as historical events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.