Abstract
Deltamethrin (DM) is a highly effective and widely used pyrethroid pesticide. It is an environmental factor affecting public and occupational health and exerts direct toxic effects on the central nervous system. As the major target organs for neurotoxicity of DM, the hippocampus and the cerebellum are critical to the learning and motor function. Pregnant Wistar rats were randomly divided into four groups and gavaged at doses of 0, 1, 4or 10 mg/kg/d DM from gestational day (GD) 0 to postnatal day (PN) 21. The PC12 cells were selected to further verify the regulatory mechanisms of DM on the neurodevelopmental injury. We found that maternal exposure to DM caused learning, memory and motor dysfunction in male offspring. Maternal exposure to DM induced the decrease in the density of hippocampal dendritic spines in male offspring through the reduced expression of M1 mAchRs, which in turn reduced the mediated AKT/mTOR signaling pathway, contributing to the inhibition of dynamic changes of GluA1. Meanwhile, DM exposure inhibited the BDNF/TrkB signaling pathway, thereby reducing phosphorylation of stathmin and impairing cerebellar purkinje cell dendrite growth and development. Taken together, maternal exposure to DM during pregnancy and lactation could impair neurodevelopment of male offspring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.