Abstract

Rodent maternal behaviors are due to the coordinated effects of fluctuating hormones, with their onset triggered by interactions with newborn pups. Previous studies have shown that many genes have changes in expression during peripartum stages. However, it is unclear if there are long-lasting changes in gene expression, well after the performance of maternal behaviors, that could influence physiology and behavior throughout the remaining lifespan. Here, gene expression differences were examined in mouse between age-matched virgin and primiparous females, at least 4 weeks after weaning. Of the five brain regions examined—hypothalamus, hippocampus, cortex, cerebellum, and the amygdala—only the hypothalamus had thousands of genes with significant expression differences. The cerebellum had 130 genes with expression differences, and the other brain regions had no significant changes detected. The expression changes in the hypothalamus include an enrichment of genes that could mediate long-lasting behavioral and physiological changes, given their known roles in parental behavior, including galanin and prolactin receptor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call