Abstract

AimsMaternal diabetes negatively impacts the offspring's brain, but little is known about its effects on the retina, which is also part of the central nervous system. We hypothesized that maternal diabetes adversely influences offspring retina development leading to structural and functional deficits. Main methodsRetinal structure and function were evaluated at infancy, by optical coherence tomography and electroretinography, in male and female offspring of control, diabetic and diabetic-treated with insulin Wistar rats. Key findingsMaternal diabetes induced a delay in male and female offspring eye-opening, while insulin treatment expedited it. Structural analysis showed that maternal diabetes decreased the thickness of the inner and outer segment layer of photoreceptors in male offspring. Electroretinography also revealed that maternal diabetes decreased the amplitude of scotopic b-wave and flicker response in males, suggesting bipolar cells and cone photoreceptor dysfunction, an effect not observed in females. Conversely, maternal diabetes decreased cone arrestin protein levels in female retinas, while not affecting cone photoreceptor number. Dam insulin therapy was efficient in preventing the offspring photoreceptor changes. SignificanceOur results suggest that photoreceptors are affected by maternal diabetes, which may account for visual impairments at infancy. Notably, both male and female offspring presented specific vulnerabilities to hyperglycemia in this sensitive period of development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.