Abstract

Prolonged separation from the mother can interfere with normal growth and development and is a significant risk factor for adult psychopathology. In rodents, separation of a pup from its mother increases the behavioral and endocrine responses to stress for the lifetime of the animal. Here we investigated whether maternal deprivation could affect brain development of infant rats via changes in the rate of cell death as measured by labeling the 3′ end of DNA fragments using terminal transferase (ApopTag). At postnatal day 12 (P12), the number of cells undergoing cell death approximately doubled in the cerebral cortex, cerebellar cortex and in several white matter tracts following 24 h of maternal deprivation. Deprivation strongly increased the number of ApopTag-labeled cells at P6 but not at P20. Stroking the infant rats only partially reversed the effects of maternal deprivation. Increased cell death in white matter tracts correlated with an induction of nerve growth factor which has been previously associated with oligodendrocyte cell death. Cell birth was either unchanged or decreased in response to deprivation. These results indicate that maternal deprivation can alter normal brain development by increasing cell death of neurons and glia, and provides a potential mechanism by which early environmental stressors may influence subsequent behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.