Abstract

It has been demonstrated that activated astrocytes in the hypothalamus could disrupt GnRH secretion in offspring after maternal di-n-butyl phthalate (DBP) exposure, indicating that the effect of DBP on astrocyte activation and crosstalk between astrocytes and neurons is still worthy of further investigation. In this study, pregnant mice were intragastrically administered DBP dissolved in corn oil from gestational days (GD) 12.5–21.5. Maternal DBP exposure resulted in hippocampal astrocyte activation, abnormal synaptic formation, and reduced autonomic and exploratory behavior in offspring on postnatal day (PND) 22. Further studies identified that mono-n-butyl phthalate (MBP) induced astrocyte activation and proliferation by activating the AKT/NF-κB/IL-6/JAK2/STAT3 signaling pathway. Moreover, upregulated thrombospondin 1 (TSP1) in activated astrocytes regulated synaptic-related protein expression. This study highlights the neurotoxicity of maternal DBP exposure to offspring, which provides new insights into identifying potential molecular targets for the treatment of diseases related to neurological development disorders in children.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.