Abstract

Maternal vaccination may prevent infant coronavirus disease 2019 (COVID-19). We aimed to quantify protection against infection from maternally derived vaccine-induced antibodies in the first 6 months of an infant's life. Infants born to mothers vaccinated during pregnancy with 2 or 3 doses of a messenger RNA COVID-19vaccine (nonboosted or boosted, respectively) had full-length spike (Spike) immunoglobulin G (IgG), pseudovirus 614D, and live virus D614G, and omicron BA.1 and BA.5 neutralizing antibody (nAb) titers measured at delivery. Infant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was determined by verified maternal-report and laboratory confirmation through prospective follow-up to 6 months of age between December 2021 and July 2022. The risk reduction for infection by dose group and antibody titer level was estimated in separate models. Infants of boosted mothers (n = 204) had significantly higher Spike IgG, pseudovirus, and live nAb titers at delivery than infants of nonboosted mothers (n = 271), and were 56% less likely to acquire infection in the first 6 months (P = .03). Irrespective of boost, for each 10-fold increase in Spike IgG titer at delivery, the infant's risk of acquiring infection was reduced by 47% (95% confidence interval 8%-70%; P = .02). Similarly, a 10-fold increase in pseudovirus titers against Wuhan Spike, and live virus nAb titers against D614G, and omicron BA.1 and BA.5 at delivery were associated with a 30%, 46%, 56%, and 60% risk reduction, respectively. Higher transplacental binding and nAb titers substantially reduced the risk ofSARS-CoV-2 infection in infants, and a booster dose amplified protection during a period of omicron predominance. Until infants are age-eligible for vaccination, maternal vaccination provides passive protection against symptomatic infection during early infancy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.