Abstract

Land plants are characterised by haplo-diploid life cycles, and developing ovules are the organs in which the haploid and diploid generations coexist. Recently it has been shown that hormones such as auxin and cytokinins play important roles in ovule development and patterning. The establishment and regulation of auxin levels in cells is predominantly determined by the activity of the auxin efflux carrier proteins PIN-FORMED (PIN). To study the roles of PIN1 and PIN3 during ovule development we have used mutant alleles of both genes and also perturbed PIN1 and PIN3 expression using micro-RNAs controlled by the ovule specific DEFH9 (DEFIFICENS Homologue 9) promoter. PIN1 down-regulation and pin1-5 mutation severely affect female gametophyte development since embryo sacs arrest at the mono- and/or bi-nuclear stages (FG1 and FG3 stage). PIN3 function is not required for ovule development in wild-type or PIN1-silenced plants. We show that sporophytically expressed PIN1 is required for megagametogenesis, suggesting that sporophytic auxin flux might control the early stages of female gametophyte development, although auxin response is not visible in developing embryo sacs.

Highlights

  • IntroductionThe gametophytes are comprised of only a few cells embedded within the diploid sexual organs of the flower

  • In flowering plants, the gametophytes are comprised of only a few cells embedded within the diploid sexual organs of the flower

  • Based on our data on local auxin synthesis, PIN localization and auxin response patterns we propose a dynamic model describing auxin flux during ovule development (Figure 4A–D)

Read more

Summary

Introduction

The gametophytes are comprised of only a few cells embedded within the diploid sexual organs of the flower. The formation of the female gametophyte is divided into two main steps, megasporogenesis and megagametogenesis [1,2]. During megasporogenesis the Megaspore Mother Cell (MMC) undergoes meiosis and produces four haploid megaspores. Three of the megaspores are destined to degenerate, and just one will persist and become a functional megaspore (FM). This event marks the FG1 stage of megagametophyte development. The FM undergoes three consecutive mitotic divisions (FG1–FG4) that lead to the formation of the mature embryo sac (FG5) [1,2]. The embryo sac is surrounded by the two integuments and connected to the placenta through the funiculus

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.