Abstract

Intrauterine exposure to heavy metals may adversely affect the developing fetus and health later in life, while certain trace elements may be protective. There is limited data on their dynamic fluctuation in circulating concentration of women from preconception to pregnancy and the degree of transplacental passage to fetus. Such information is critically needed for an optimal design of research studies and intervention strategies. In the present study, we profiled the longitudinal patterns and trajectories of metal(loid)s and trace elements from preconception to late pregnancy and in newborns. We measured whole blood metal(loid)s in women at preconception, 16, 24 and 32 weeks of gestation and in cord blood in 100 mother-newborn pairs. Our data showed that the mean concentrations of mercury (Hg), lead (Pb), rubidium (Rb), manganese (Mn), and iron (Fe) were lower during early-, mid-, and late-pregnancy than at preconception. Copper (Cu), and calcium (Ca) concentrations increased after pregnancy (Cu 798 versus 1353, 1488, and 1464 μg/L). Concentrations at preconception were correlated with those during pregnancy for all examined metal(loid)s. Maternal Hg, Pb, and Se concentrations at late-pregnancy were correlated with those in newborn cord blood in various degrees (correlation coefficients: Hg 0.66, Pb 0.29, Se 0.39). The estimated placental transfer ratio for toxic metal(loid)s ranging from 1.68 (Hg) to 0.18 (Cd). Two trajectory groups were identified for Hg, Pb, Cd, Se concentrations. Hg concentrations may be correlated with maternal education levels. The study is the first to present longitudinal circulating concentration trajectories of toxic metal(loid)s and trace elements from preconception to pregnancy stages. A high degree of transplacental passage was observed in toxic metals Pb and Hg which may pose hazards to the developing fetus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.