Abstract

BackgroundScarce is knowledge on the process regulating the development of acid secretion, orexigenic signaling, and chemosensing in the stomach of young pigs. Changes of early microbial encounters by suckling pigs can interact with the gut maturation, by the induction of different molecular signaling. Our goal was to assess if the age of offspring and the maternal environment, influenced by sow antibiotic treatment peripartum, could affect gastric morphology and the expression of genes involved in the control of hydrochloric secretion, feed intake, taste, and inflammation in offspring stomach.Methods84 pigs from sows fed a diet with amoxicillin (on –d10 to +d21 from farrowing, ANT) or without (CON) were sacrificed at d14, d21, d28 (weaning) or d42. Samples of oxyntic (OXY), pyloric (PY) and cardiac mucosae close to OXY were collected and parietal and enteroendocrine cells (EECs) were counted. Relative gene expression of a set of 11 key genes (ATP4A, SSTR2, GAST, GHRL, MBOAT4, PCSK1, GNAT1, TAS1R1, TAS1R3, IL8 and TNF) was assessed by qRT-PCR. In addition, 40 offspring obtained from the same ANT and CON sows were offered a normal or a fat-enriched diet for 4 weeks between 140 and 169 d of age, and then OXY and PY were sampled.ResultsThe number of parietal and EECs increased with age (P < 0.001). ATP4A increased with age (within suckling, P = 0.043, post-weaning vs. suckling, P < 0.001), SSTR2 increased only after weaning (P < 0.001). In OXY, GHRL increased during suckling (P = 0.012), and post-weaning as a trend (P = 0.088). MBOAT4 tended to increase during suckling (P = 0.062). TAS1R1 increased from suckling to post-weaning period (P =0.001) and was lower in ANT offspring (P = 0.013). GNAT1 in PY was higher in ANT offspring (P = 0.041). Antibiotic treatment of sows peripartum increased expression of GHRL and MBOAT4 in OXY of growing-finishing offspring aged 5 months.ConclusionsData show that sensing for umami taste and ghrelin regulation can be affected by maternal environment, but the development of acid secretion, orexigenic signaling and taste perception in the stomach are mostly developmentally controlled.

Highlights

  • Scarce is knowledge on the process regulating the development of acid secretion, orexigenic signaling, and chemosensing in the stomach of young pigs

  • The interest for the impact of molecules originating from the interaction of bacteria and diet on other signals, for instance, butyrate [4, 5], indole [6] and its metabolites [7], glutamate and structural homologue of ghrelin [8], 3- and 4- methyl-valeric acids, nonanoic acid [4], is only recent

  • Younger pigs often presented morphological signs indicating the immaturity of OXY, and 6 pigs of control group (CON) and 4 pigs of antibiotic group (ANT) could not be counted for parietal cells in the first sampling

Read more

Summary

Introduction

Scarce is knowledge on the process regulating the development of acid secretion, orexigenic signaling, and chemosensing in the stomach of young pigs. Changes of early microbial encounters by suckling pigs can interact with the gut maturation, by the induction of different molecular signaling. Ghrelin is a hormone produced mainly by EEC in the gastric oxyntic mucosa and in pancreas, and stimulates the appetite. Microbial colonization is necessary to optimize ghrelin production (compared to germ-free condition [10]). This led to the hypothesis that variation in the gastrointestinal microbiome can affect ghrelin expression, explored in the review of Schalla and Stengel [11]. By triggering the growth hormone secretagogue receptor in neurons of the myenteric plexus throughout the gastrointestinal tract, ghrelin stimulates gastric emptying and increase motility throughout [12]. Ghrelin can be the link between gut microbiome and the control of appetite and gastrointestinal motility

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call